Binary Coding in Auditory Cortex
نویسندگان
چکیده
Cortical neurons have been reported to use both rate and temporal codes. Here we describe a novel mode in which each neuron generates exactly 0 or 1 action potentials, but not more, in response to a stimulus. We used cell-attached recording, which ensured single-unit isolation, to record responses in rat auditory cortex to brief tone pips. Surprisingly, the majority of neurons exhibited binary behavior with few multi-spike responses; several dramatic examples consisted of exactly one spike on 100% of trials, with no trial-to-trial variability in spike count. Many neurons were tuned to stimulus frequency. Since individual trials yielded at most one spike for most neurons, the information about stimulus frequency was encoded in the population, and would not have been accessible to later stages of processing that only had access to the activity of a single unit. These binary units allow a more efficient population code than is possible with conventional rate coding units, and are consistent with a model of cortical processing in which synchronous packets of spikes propagate stably from one neuronal population to the next. 1 Binary coding in auditory cortex We recorded responses of neurons in the auditory cortex of anesthetized rats to pure-tone pips of different frequencies [1, 2]. Each pip was presented repeatedly, allowing us to assess the variability of the neural response to multiple presentations of each stimulus. We first recorded multi-unit activity with conventional tungsten electrodes (Fig. 1a). The number of spikes in response to each pip fluctuated markedly from one trial to the next (Fig. 1e), as though governed by a random mechanism such as that generating the ticks of a Geiger counter. Highly variable responses such as these, which are at least as variable as a Poisson process, are the norm in the cortex [3-7], and have contributed to the widely held view that cortical spike trains are so noisy that only the average firing rate can be used to encode stimuli. Because we were recording the activity of an unknown number of neurons, we could not be sure whether the strong trial-to-trial fluctuations reflected the underlying variability of the single units. We therefore used an alternative technique, cellFigure 1: Multi-unit spiking activity was highly variable, but single units obeyed binomial statistics. a Multi-unit spike rasters from a conventional tungsten electrode recording showed high trial-to-trial variability in response to ten repetitions of the same 50 msec pure tone stimulus (bottom). Darker hash marks indicate spike times within the response period, which were used in the variability analysis. b Spikes recorded in cell-attached mode were easily identified from the raw voltage trace (top) by applying a high-pass filter (bottom) and thresholding (dark gray line). Spike times (black squares) were assigned to the peaks of suprathreshold segments. c Spike rasters from a cell-attached recording of single-unit responses to 25 repetitions of the same tone consisted of exactly one well-timed spike per trial (latency standard deviation = 1.0 msec), unlike the multi-unit responses (Fig. 1a). Under the Poisson assumption, this would have been highly unlikely (P ~ 10). d The same neuron as in Fig. 1c responds with lower probability to repeated presentations of a different tone, but there are still no multi-spike responses. e We quantified response variability for each tone by dividing the variance in spike count by the mean spike count across all trials for that tone. Response variability for multi-unit tungsten recording (open triangles) was high for each of the 29 tones (out of 32) that elicited at least one spike on one trial. All but one point lie above one (horizontal gray line), which is the value produced by a Poisson process with any constant or time varying event rate. Single unit responses recorded in cell-attached mode were far less variable (filled circles). Ninety one percent (10/11) of the tones that elicited at least one spike from this neuron produced no multi-spike responses in 25 trials; the corresponding points fall on the diagonal line between (0,1) and (1,0), which provides a strict lower bound on the variability for any response set with a mean between 0 and 1. No point lies above one. attached recording with a patch pipette [8, 9], in order to ensure single unit isolation (Fig. 1b). This recording mode minimizes both of the main sources of error in spike detection: failure to detect a spike in the unit under observation (false negatives), and contamination by spikes from nearby neurons (false positives). It also differs from conventional extracellular recording methods in its selection bias: With cella Time (msec) 0 40 80 120 160 200 1sec 5 m V Raw cellattached voltage Threshold Identified spikes High-pass filtered . . . . . .. . ... ...... . ... .
منابع مشابه
Effect of neuregulin-1 on the auditory cortex in adult C57BL/6J mice
Objective(s): We sought to explore whether neuregulin-1(NRG1) would have a protective effect on the auditory cortices of adult C57BL/6J mice.Materials and Methods: We used RTPCR and Western blot (WB) to detect the expression of NRG1 and ERBB4 (the receptor of NRG1) in the auditory cortices of C57BL/6J mice of different ages (6–8 weeks an...
متن کاملSpectral and temporal integration in the auditory cortex of awake primates and its implications for coding of species-specific communication sounds
I will discuss recent work in my laboratory in a vocal primate model, the common marmoset. The long-term objective of our studies is to understand how biologically important vocal communication sounds are represented by the auditory cortex. We have examined some fundamental issues in cortical coding of complex sounds across neural populations in the auditory cortex of awake marmosets and attemp...
متن کاملRole of Amygdala-Infralimbic Cortex Circuitry in Glucocorticoid-induced Facilitation of Auditory Fear Memory Extinction
Introduction: The basolateral amygdala (BLA) and infralimbic area (IL) of the medial prefrontal cortex (mPFC) are two interconnected brain structures that mediate both fear memory expression and extinction. Besides the well-known role of the BLA in the acquisition and expression of fear memory, projections from IL to BLA inhibit fear expression and have a critical role in fear extinction. Howev...
متن کاملSpeech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain
Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG) to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta) and the amplitude of high-frequency (gamma) oscillations in the auditory cortex. P...
متن کاملMagnified Neural Envelope Coding Predicts Deficits in Speech Perception in Noise
Verbal communication in noisy backgrounds is challenging. Understanding speech in background noise that fluctuates in intensity over time is particularly difficult for hearing-impaired listeners with a sensorineural hearing loss (SNHL). The reduction in fast-acting cochlear compression associated with SNHL exaggerates the perceived fluctuations in intensity in amplitude-modulated sounds. SNHL-i...
متن کاملSingle neuron and population coding of natural sounds in auditory cortex.
The auditory system drives behavior using information extracted from sounds. Early in the auditory hierarchy, circuits are highly specialized for detecting basic sound features. However, already at the level of the auditory cortex the functional organization of the circuits and the underlying coding principles become different. Here, we review some recent progress in our understanding of single...
متن کامل